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Foreword

In conducting research using animals, the investigator(s) adhered to the "Guide for the

Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of

Laboratory Animals of the Institute of Laboratory Animal Resources, Commission on Life

Sciences, National Research Council (DHHS, PHS, NIH Publication No. 86-23, Revised 1985).
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During the last year, we have conducted studies to determine:

(1) Whether [3 H]acetylcholine ( 3H]ACh) binding sites in rat brain, which we hypothesized

are recognition sites on nicotinic cholinergic receptors, require disulfide bonds.

(2) Whether [3H]ACh binding sites in brain are affected by repeated administration of

nicotine or chronic cholinesterase inhibition.

(3) Whether [3H]ACh can be used to map the brain distribution of nicotinic cholinergic

recognition sites using autoradiographic methods.

This report describes the results of those studies.

1. Disulfide bond reuirement of [3 IACh recognition sites in brain. In electroplax and in

skeletal muscle, modifications of disulfide bonds decrease th2 potency of agonists at nicotinic

cholinergic receptors (1-3). Modification of disulfide bonds has also been reported to

decrease transmission in frog sympathetic ganglia (4); and Karlin (5) has concluded that a

reducible disulfide bond at or near acetylcholine recognition sites may be a common feature

of nicotinic cholinergic receptors in a variety of peripheral tissues. We have used [3H]ACh

to label high affinity nicotinic cholinergic recognition sites in rat brain and to determine

whether binding of the agonist is affected by modification of disulfide bonds.

Cerebral cortex from male Sprague-Dawley rats (250-300 g; 3 months of age) was

homogenized in 50 mM Tris-HC1 buffer (pH 8.5) containing 120 mM NaCI, 5 mM KCl, 2

mM CaC12, 1 mM MgC1 2, and 1.5 uM atropine sulfate. The homogenates were washed

once by centrifugation and then preincubated in dithiothreitol (DTT) to reduce disulfide

bonds, with p-chloromercuribenzoic acid (PCMB) to form stable thiol complexes with

sulfhydryl groups, or with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to reoxidize sulfhydryl

4



groups. In each case the tissues were preincubated with the modifying agent for 30 min at

0°C. Each preincubation with modifying agent was terminated by dilution with cold buffer,

centrifugation at 48,000 g, and resuspension in fresh buffer with or without another

modifying agent. Finally, the tissue was washed twice by centrifugation in fresh buffer

containing no modifying agents and then used for measurement of [3H]ACh binding sites as

previously described (6). In all cases, control homogenates were carried through the same

number of preincubation and washing steps. Differences between groups were analyzed

statistically by Student's t-test or Duncan's new multiple range test (7).

Preincubation of rat cerebral cortex with DTT decreased specific binding of [3H]ACh.

The IC50 of DTT for decreasing binding was approximately 500 uM. Analyses of saturation

binding experiments by Scatchard plots indicated that the decreased binding was due to an

apparent decrease in the number (B,,) of [3H]ACh recognition sites and that the affinity (Kd)

of the remaining sites was unaltered. An example of this decrease in [3IH]ACh binding sites

with increasing concentrations of DTI" is shown in Figure 1.

The most prominent effect of DIT is reduction of disulfide bonds to sulfhydryl

groups. If the presence of disulfide bonds is critical to binding of [3H]ACh, then reoxidation

of sulfyhdryl groups should restore binding. Preincubation of the tissues with the oxidizing

agent DTNB alone had no effect on [3H]ACh binding (Table 1). However, the decrease in

binding by preincubation with DT'" could be reversed by a second preincubation with 1 mM

DTNB (Table 1). This effect was due to restoration of the number of binding sites.

However, if the sulfydryl groups were reacted with PCMB to form stable thiol complexes
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before preincubation with DTNB, the restoration of binding sites by DTNB was at least

partially prevented (Table 1).

Scatchard analyses indicated that the apparent affinity of nicotinic cholinergic

recognition sites for [3H]ACh was not affected by reduction of disulfide bonds with DTT

(Fig. 1). The effects of disulfide bond reduction on other agonist and antagonist affinities

were also studied by comparing competition curves in control and DT7-treated membranes.

The affinities of neither the agonist cytisine nor the antagonists d-tubocurare, hexamethonium,

and dihydro-fi- erythroidine were significantly altered by DTT (Table 2).

To determine whether agonist occupation of the [3 H]ACh recognition sites could

protect the disulfide bond from cleavage by DT'T, preincubation with DTT was carried out in

the presence of agonists. The presence of 100 uM ACh or (-)nicotine before and during the

preincubation with DT' failed to prevent the reduction of [3H]ACh binding (Table 3).

The results of these studies indicate that high affinity nicotinic cholinergic recognition

sites in mammalian orain share with peripheral nicotinic cholinergic receptors the property of

dependence on intact disulfide bonds. The inability of agonists to prevent the decrease in

binding by DY]I suggests that the critical disulfide bond(s) is not directly at the recognition

site, but is close enough that when reduced to sulfhydryl groups it renders the site incapable

of binding [3IH]ACh. It is possible that breaking the disulfide bond causes a conformational

change in the receptor so that agonists are no longer recognized. The modification of these

[3H]ACh binding sites by alternation of disulfide bonds and sulfhydryl groups should be a

useful tool for determining the function of the brain [3IH]ACh recognition sites.
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2. In vivo regulation of [3HIACh recognition sites by nicotine and cholinesterase inhibition.

An important characteristic of most neurotransmitter receptors is that they are capable of

undergoing increases and decreases in number (density) in response to in vivo treatments that

decrease and increase their stimulation, respectively. This up-and-down-regulation appears to

be an important mechanism for regulation of neurotransmission signals, and it is one

indication that a binding site is part of a functionally important receptor.

Effects of cholinesterase inhibition. To examine the in vivo regulation of [3H]ACh

nicotinic recognition sites in brain, the effects of chronic cholinesterase inhibition by

diisopropylfluorophosphate (DFP) and the effects of repeated administration of nicotinic

agonists on [3 H]ACh recognition sites were measured. Rats were injected subcutaneously

once daily for 10 days with DFP (1 mg/kg on day 1, and 0.2-0.4 mg/kg on days 2-10).

Control rats received injections of water on the same schedule. The rats were killed by

decapitation 24 hr after the last injection. Nicotine (1 mg/kg = 6 umol/kg), cytisine (6

umol/kg), or cotinine (6 umol/kg) was injected subcutaneously twice daily for 1-21 days.

Control rats received injections of water. The rats were usually killed 18 hr after the last

injection, but some rats were killed 1 hr after a single injection of nicotine, and some rats

were killed 7 days after a 10-day treatment with nicotine. In some experiments, the effects

of the nicotinic antagonists mecamylamine and dihydro-B-erythroidine alone or preceding the

nicotine injections were examined.

Nicotinic cholinergic receptor recognition sites in cerebral cortex, thalamus, striatum,

and hypothalamus were assayed using [3H]ACh as previously described (6). Cholinesterase

enzyme activity was measured according to the method of Ellman "ta1. (8). Differences
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between or among groups were compared statistically by Student's t-test or by Duncan's new

mul:.ple range test when more than two groups were compared.

Cholinesterase enzyme activity in brain was inhibited by 82 ± 2 percent 24 hr after

the last of the 10-day treatments with DFP. [3H]ACh binding in cortex, thalamus, striatum

and hypothalamus was decreased by 20-38 percent by treatment with DFP (Table 4). The

decrease in binding was due to a reduction in the number of [3 H]ACh recognition sites, while

the affinity of the sites was unchanged (Fig. 2).

This decrease in [3H]ACh recognition sites following chronic cholinesterase inhibition

appears to be an in vivo adaptive response to the increased synaptic levels of acetylcholine.

This indicates that [3H]ACh recognition sites are responsive to synaptic concentrations of

acetylcholine in vivo, and it suggests that they are innervated by cholinergic axons. In

addition, it indicates that the regulation of these [3H]ACh recognition sites is similar to that

of other neurotransmitter and hormone receptors that down-regulate in response to augmented

stimulation.

Effects of chronic treatment with nicotinic agonists and antagonists. In contrast to

cholinesterase inhibition, 10 days of nicotine treatment increased [3H]ACh binding in cortex,

thalamus, striatum, and hypothalamus (Table 5). Scatchard analyses indicated that the

increase in binding was due to an increase in the number of [3H]ACh recognition sites

(Table 6). Muscarinic receptors labeled with [3H]QNB were unaffected by nicotine treatment

(Table 5).

The time course of the nicotine-induced increase in nicotinic cholinergic binding was

examined in the cerebral cortex after either a single injection or two injections each day foi
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1-21 days (Fig. 3). There was no change in binding either 1 hr after a single injection or 18

hrs after 1 day of treatment. Following 5 days of treatment, however, [ 3 H]ACh binding was

increased by 20 percent, and after 10 days of treatment the binding was increased by 28-30

percent. This increase was maintained following 21 days of treatment. The increased

binding induced by nicotine treatment appears to be reversible. Thus, when rats were killed

7 days after a 10-day treatment period, the [3H]ACh binding was still significantly increased

compared to binding in brains from control rats, but it appeared to be returning to control

values and was significantly lower than binding in brains from rats killed 18 hrs after the last

treatment (Fig. 3).

To determine whether the increase in [3H]ACh recognition sites after treatment with

nicotine was due to activation of the receptor or simply to occupancy, rats were treated for

10-14 days with either the nicotinic agonist cytisine, the nicotine metabolite cotinine, or the

antagonists mecamylamine or dihydro-B-erythroidine. In each case, the effects of the

treatment were compared to those of nicotine treatment. The treatment with cotinine did not

effect binding (Table 7A), but treatment with cytisine increased binding to nearly the same

extent as nicotine treatment (Table 7A). Neither of the antagonists altered binding

significantly (Table 7, B-D). It was also important to examine whether the antagonists could

prevent the increase in [3H]ACh binding sites induced by nicotine. Therefore, rats were

pretreated with mecamylamine or dihydro-B-erythroidine 20 min before each injection of

nicotine for 10 days. Neither antagonist prevented the increase in [3H]ACh binding induced

by nicotine (Table 7, B and C).
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The mechanism of the nicotine-induced increase in [3H]ACh nicotinic recognition sites

in brain is of particular interest and importance. The effect appears to be selective because

muscarinic receptors are not affected by nicotine treatment. In addition, the effect appears to

be specific to nicotinic agonists because administration of cytisine, a ganglionic agonist,

produces a similar effect, but administration of neither cotinine nor either of two antagonists

altered the binding of [3H]ACh. Further, pretreatment with the antagonists did not block the

increase induced by nicotine. Thus, the data suggest that the critical site on the receptor from

which the signal for up-regulation is triggered is distinct from the site where antagonists bind.

This critical site could be the agonist recognition site itself.

Nicotine is classically defined as an agonist at cholinergic receptors in muscle and

ganglia (9), and it appears to be an agonist in brain also (10,11). However, following

exposure to nicotine there is a rapid decrease in cholinergic receptor responsivity in muscle

and ganglia due to depolarization blockade (12,13). Following adequate doses of nicotine,

diminished receptor responsivity persists beyond the depolarization phase (14), reflecting

prolonged desensitization of the receptor. Therefore, it is possible that repeated

administration of nicotine results in a protracted functional blockade of the receptor, and this

could signal up-regulation by the cell.

3. Measurement of [3H1ACh recognition sites in brain by autoradiography. We have used

quantitative autoradiography to begin to map the distribution of (3H]AC', recognition sites in

brain. In this procedure, 32 um frozen sections of rat brain were cut with a cryostat,

mounted onto slides, preincubated for two 10-min periods, and then incubated with [3H]ACh

under conditions similar to those that we use for homogenate binding. After incubation each
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slide was washed twice for 5 min in cold buffer, rinsed in distilled water to remove buffer

salts, dried on a slide warmer, and then juxtaposed to LKB Ultrofilm in x-ray cassettes.

After exposure for 6-8 weeks, the films were developed and fixed in Kodak D-19. Optical

densities of the brain regions on the films were measured with a microcomputer-assisted

densitometer and compared with standards made from frozen brain homogenate to which

known amounts of [3 H] were added.

The results of our initial autoradiographic studies confirm data from our homogenate

binding studies. Thus, high binding was observed by autoradiography in the thalamus, and

moderate levels of binding were observed in the cerebral cortex, striatum, and hippocampus.

However, autoradiography has allowed quantitation of [H]ACh recognition sites in specific

nuclei of the thalamus and specific layers of the cortex and the hippocampus. In addition,

binding in very small areas of brain, in which studies of homogenate binding are not

practical, is easily visualized and quantitated by autoradiography. For example, the medial

habenula, which is too small for routine studies of homogenate binding, appears to contain

the highest density of [3H]ACh recognition sites in rat brain.

Autoradiography should contribute significantly to our knowledge of the distribution

of the [3H]ACh nicotinic recognition sites in brain, and to the effects of drugs such as

nicotine and the cholinesterase inhibitors DFP and soman on those sites.
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TABLE I
Effectq of dasulfide bond and sul/lydryl reagents on ['H-

acetyklhohne binding in cerebral cortex
Cortical homogenates were incubated with 1 mM dithiothreitoL

DTNB. or PCMB for 30 mm at 0° (pH 8.5) and either washed for
subsequent treatment with another reagent or prepared for ([Hlacety.
choline binding (10 nu) as described in the text. Control binding - 2.11
± 0.08 pmoles/g of tissue. Data are expressed as the mean ± standard
error of the mean of four experiments.

Pretreatment ' of control

Control 100 ± 3.8

A. I mm dithiothreitol 24.4 t 8.0'
B I mu DTNB 90.0 ± 8.0
C I mu dithiothreitol followed by I mu DTNB 90.6 ± 4.1
D. 1 m PCMB 107.6 ± 3.7
E I mm dithiothreitol followed by I rm PCMB 33.7 ± 1.2'
F I mm dithiothreitol followed by I mm PCMB

followed by I mu DTNB 71.4 : 5.7'

p < 0.01 compared with control.

'p < 0.01 compared with control and with Treatments C and E.

TABLE 2

Effect of dithiothreaoi pretreatment on agonist and antagonist
(ompetitwn for [HIacetylchoine binding sites in cerebral cortex

Cortical homogenates were incubated with 300 pm dithiothreitol for
.30 mm at 0' (pH 8.5). The reaction was terminated by dilution with

cold buffer. The washed homogenates were washed and subsequently
incubated with 10 nm [iHjacetylcholine and several concentrations of
competing drugs for 40 min at 00 as described in the text. The concen-
tration of drug which decreased specific binding of [1Hjacetvlcholine
by 5(6 (IC.,, was determined graphically by inspection. Each value is
the mean ± standard error of the mean of two to four experiments.

Competing drug IC.11

Untreated Dithiothreitol-
treated

rim

Dihydro-f-eryhtroidine 215 t 39 214 ± 31

d-Tubocurarine .38.000 ± 2,500 25,300 ± 5,800
Hexamethomum 630.000 :±: 60,000 530,000 ± 30,000
CO.tismne 5.0 ± 0.1 7.3 ± 0.3

TABLE 3

Effect of nicotinic cholunergw agonist pretreatment on the reduction

of dLulfide bonds by dithiothreitol in rat cerebral cortex
Cortical homogentes were incubated in the presence or absence of

00 opm acetylcholine (in the presence of 100 ODa DFP) or 100 Am (-)-

nicotine for 30 mm at 00. Subsequently. I mat dithiothreitol was added

and the total mixture was incubated for an additional 30 min at 00 (pH

8.5). The reaction was terminated by dilution with cold buffer, and the

homogenats were washed two times [3H]Acetyschone binding (10nme was assayed in the washed homogenates as described in the text.
Control binding - 1.81 ± 0.22 pmoles/g of tissue. The data are expressed

as the mean ± standard error of the mean of three experiment&

Pretreatment % of control

'Control 100± 12.2
A. I mM dithiothreitol 40.7 ± 4.6
B. 100 &u acetylchohne 106. t 8.9C. 1W0pm (-)-nicotine 106.6 ± 5.6
D. 100 pa acetykholune + I mm dithiothreitol 32.5 :t 2.1V

E. 100pA (-)-nicotine + I mtm dithiothreitol 43.0 ± 4.5*

p < 0.01 compared with control.
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TABLE 4 Effec of repeated DFP administration (10
days) on [3HIACh binding to nicotinic sites in

several areas of rat brain

Specific binding (pmol/g tissue)

Brain area Control DFP

Cerebral cortex 2.2 ± 0.06 1.7 ± 0.08'
03) (11)

Thalamus 3.2 ± 0.17 2.6 ± 0.18s
(9) (10)

Striatum 2.2 ± 0.07 1.5 ± 0.05'
(6) (5)

Hypothalamus 0.72 ± 0.07 0.45 ± 0 .06b

(4) (4)

Nicotinic sites were assayed using 10 nM [3H]ACh as described
in the text. Cholinesterase activity was inhibited in the DFP-
treated rats by -82%. The data are expressed as means ± SEM for

the number of animals indicated in parentheses. Data for cerebral
cortex are from reference 15 and are presented here for purposes
of compairson.

ap<0.01 compared with control.
lp<0.05 compared with control.

TABLE 5 jeI /e't repeated nit olfne administration (I mg ,k twice

dailv ]rr 10 do'v. on ['tt]ACh hindin.' to nicotinic sires and f['HQNB
to niuscarinic sites in several areas of rat brain

Specific binding (pmol/g tissue)
I'H}A~hI'HIQN

B

Brain area Control Nicotine Control Nicotine

Cerebral cortex 2.0 - 004 2.5 - 0.06" 74.7 ± 1.5 74.5 -- 2.2

(10) (10) (4) (4)

Thalamus 3.6 ± 0.11 4.6 0.17" 41.4 -+ 1.4 39.5 ± 3.3
(91 (81 (S) (5)

Striatum 2.1 f 0.05 2.5 0.24" 86.3 t 2.3 91.3 f 3.0
(161 (15) (5) (5)

Hypothalamus 0.67 t 0.04, 0.92 0.07" - -

(7) (8)

Nicotinic sites were assayed using 10 nM ['HIACh in each area. Muscarinic
sites were assayed using 0.6 nM ('HIQNB in the cortex and thalamus and 0.2

nM in the striatum. The data are means t SEM for the number of rats indicated

in parentheses.
"p < 0.01 compared with control.
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TABLE 6 J~lifte o'r epeai'd fljcitptt tdn in is tro lin on densirs'
B_, in(. aitiniI K1,) 4/'H/,AL~ hi,,dinet. le~s in three area.' of

rat brain,

R__, (pmol g ttssuei A0  (nAfIl

Brain area Control Nicotine Control Nicotine

Cerebral cortex, 4.1 0.31 5. 3 _1. 11" 8.3 0 .90 8.0 -0.47
Thalamus 6v9 0.63 9-0 ( .31' 9.1 1.0 10.9 -1.4
Striatumn 4.6 0.33 'b.4 -_k.41ir 10,t 2.0 11. - 1.8

Brain homogenates were prepared from rats that were injected twice daily for
10 days Aith I 1-nicotine f I mgikg snc,). The homogenates were incubated with
['HJACh 2.5--30.0 n~N) at O'C for 40 min as described in the text. The data are
expressed as means _-SEM for four experiments.

p ,0.0)5 compared with control.

TABLE 7 1-10' 1v.% ot repeated odministraition ofttOtile 1oiyls antd untatg,' nists and aj metaholit .e ,,f
Iti('Ot( ine on I'I/ACi binding, in the cerebral cortex

Specific bindingDrug treatment ipmol~g tissue)

Control 21 00
Nicotine 2.9 1~
Cotinine 2.1 0.10t

2vi~ .6 tO.09'

Control 23 00
D'yr--crsthroidine .2 0.09Nicotine2. 0 6

Dtvr-1-crythroidine +nicotine 30 00

Control 1.3 z0Mecamrylamnine Ls5 0.12
Nicotine 1,6 t0.07-

DMecamylamitne .- nicotine 1.6 ± 0.06,

Control 1.6 ± 0,10
Mecamylamine 1.7 t0.09

A: Rats were injected twice daily for t0 days with 1- )-nicotine (I mglkg) or with equimolar doses (6 tLmnoIkg) of ( -)-cotinine or (- 1-cytismn.
B and C: Rat-, were injected twice daily for 10 days with the antagonist$dih'd --eryr~Joidine (I MOMkg Or mecatnylasnine (I mg/kg). with nic-otine I I mg/kg). or with a combination of one of the antagonist$ followed20 min later by nicotine. 0: Rats were in~jected twice daily for 14 dayswith mecamylamine (0 mg/kg). The nicotinic binding sites were assayedusing 7-1M nM VNlIACh. Data are the means ± SEM fronm six to eight
rats. Tissues from each drug tretment gopwr sae oehri
parallel with the indicated control group.m wrasyetothri

P < 0.a5 conmpared with control.
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* * control

>-- 0 3 m OTT

- 0 nM OTT

04 - 30 IUOT T

0c3-

02.

001.

0 1 2 3 4

BOUND ipmol/g tissue)

FiG. 1. Scatchard analysts of [ 1Hjacetvlcholine binding in dithi-
4threitol-treated cerebral cortex

Cortical homogenates were incubated with 0.3, 1.0. or 3.0 mim dithi-
othreitol (DTT) for 30 mm at 0' (pH 8.5). The reactions were termi-
nated by dilution with cold buffer and centrifugation at 49,000 x g for
10 min. The treated homogenates were then prepared for the ['H]
acetytldhokine binding assay as described in the text using 2.5-30.0 nM
( Vlacetylcholine. The scatchard plots are representative of 2-7 exper-

iments. The K) and B_ were determined by least-squares linear
regression. The B,_. value for the control was 3.7 t 0.2 pmoles/g of
tissue. Pretreatment with 0.3, 1.0, and 3.0 mm dithiothreitol decreased
the B... values to 1.8 _t 0.2, 1.3 ± 0.2, and 0.7 ± 0.1 pmoles/g of tissue,
respectively. The Ko value for the control was 11.1 ± 1.3 nM. The KD
values following pretreatment with 0.3, 1.0, and 3.0 mm dithiothreitol
were 11.4 ± 1.8, 12.1 - 1.2, and 13.6 :t 2.6 nM, respectively.
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Fig .2 Scatchard plats of (3H]ACh binding in cerebral cortex

from rats administered DFP for 10 days. Cortical homoge-
nates were prepared from control rats and from rats that
were injected with DFP as described in the text. The homog-
enates were incubated with varying concentrations of
[3 H]ACh (25-30.0 nM). Each point represents the mean
! SEM of the abscissa and ordinate coordinates for four ex-

periments. The Bn,, values of the DFP and control groups
are significantly different (p < 0.05)
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Fig .3 Time course of the effects of repeated nicotine ad-

ministration on [3H]ACh binding in rat cerebral cortex. Cor-tical homogenates were prepared from rats that were in-jected twice daily with ( - )-nicotine (1 mg/kg) for the numberof days indicated The rats were killed 18 h after the lastinjection except those in the "recovery" group, which werekilled 7 days after the last inlection. [3H]ACh binding (10 nM)was assayed as described in the text and is plotted as apercentage of control binding. Data are expressed as meansr SEM for 6-14 rats Control binding was 2.2 _- 0.1 pmol/g tissue. p < 0.05. **p < 0.01 compared with control; "*p< 0.05 compared with the 10-day treatment group that was
killed 18 h after the last injection
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